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"€E EFE'ZCTS OF UPSTREAP1 FUSS INJECTION 
ON DOI?NSTREI1EI HEAT TRANSFER 

W. Robert Wolfram, Jr. 

This study was performedin order to deternine the effects of up- 

stream mass inject ion on doimstream heat t ransfer  i n  a laminar non- 

react ing boundary layer. 

investigations i n  t h a t  no s W a r i t y  assumptions are made, A numeric& 

technique knotm as the method of integral-matrix analysis i s  used. 

This approach is a recent outgrowth of the method of in tegra l  relations. 

The complete coupled set of non-reacting laminar boundary layer  equations 

with discontinuous m a s s  inject ion was solved f o r  t h i s  problem using the 

integral-matrix technique. 

fer to both sharp and blunt-nosed isothermal f l a t  plates  were studied 

f o r  a Mach 2 freestream. 

injected region were varied f o r  each body, 

The study differs from numerous previous 

The e f f ec t s  of mass inject ion on heat trans- 

The amount of in jec t ion  and the length of the 

Heat t ransfer  rates were 

found t o  decrease markedly in the injected region. 

heat t ransfer  was found immediately downstream of the region of injec- 

t ion followed by an asymptotic approach t o  the  heat t ransfer  rates 

calculated f o r  the case of no injection. An insulating e f f e c t  was 

found t o  pe r s i s t  f o r  a considerable distance downstream of the inject ion 

region. 

was found t o  depend on the length of t h e  inject ion region as w e l l  as the 

rate of injection. 

A sharp rise in 

The distance required f o r  this insulating e f fec t  t o  die  out 



I wish t o  express my thanks to Dr. %?illiam F, walker, ngr thesis  

advisor, for  a l l  h i s  help and inspiration i n  defining and solving 

the problem, 

Administration f o r  both the i r  generous f inancial  support and f o r  use 

of t h e i r  computing f a c i l i t i e s ,  Finally I wish t o  thank my wife 

Melinda f o r  her patience i n  typing the manuscript. 

I am also indebted t o  the National Aeronautics and Space 



TABLE: OF CONTENTS 

Page no. 

NOMENCLYITJ!B 

I o  INTRODUCTION 

11. ANALYSIS 

111. IiESULTS Al?D DISCUSSION 

Iv. coNcLusIofJs 
V. BIBLIOGRAPHY 

i 

1 

-1 9 

23 

24 



e 

A,’ A2’ A A = coefficients defined by equations (40) 

€3,’ B2, B I B = coefficients defined by equations (a) 
C,# C2Y c y  c4 - coefficients defined by equations (45) 

c - product of density and viscosity normalized bj the i r  freestream values 

3 4  

3 4  

- heat capacity 
cP 
dol dlY d2 = coefficients defined by finite difference relat ions (34 )  

Dl 
f = stream function 

= binary d%f fusion coefficient 

g = the velocity r a t i o  specified a t  a control node 

h = s t a t i c  enthalpy 
2 = t o t a l  enthalpy defined by Ht = h + u /2 Ht 

k = thermal conductivity 

= mass f ract ion of the i t h  species 

3n = molecular m i g h t  of the mixture 

Mi= molecular m i g h t  of the i t h  species 

‘ti, = e,v, = mass r a t e  of inject ion 

N = number of nodal points across the  boundary layer 

= Prandtl number = CP”/ k 

= Schmidt number = ,a /e D, 
%r 

NSc 

P = dummy variable 

p = s t a t i c  pressure 

c?ln = loca l  heat t ransfer  r a t e  f o r  the zero injection case 

$% = stagnation point heat t ransfer  r a t e  



2 & = local. w a l l  heat t ransfer  r a t e  (BW/ sec-ft ) 

R = universal gas constant 

r = loca l  radius of curvature of the surface 

s = strearawfse distance measured along the body 

T = s t a t i c  temperature 

u =.veloci ty  component on the streamwise direction 

v = velocity component normal t o  the surface 

x - mole fract ion of the jth species 

y = distance measured normdl t o  the body 

QcH = normalizing parameter 

j3 = pressure gradient parameter defined by equation (21) 

C 

3 

= transformed coordinate normal t o  the surface 

6(= viscosity 

a= col l is ion in tegra l  

e = density 

b= characterist ic molecular diameter 

= transformed streamwise coordinate 

Superscripts: denotes pa r t i a l  different ia t ion with respect to 

Subscripts: 

00 = boundary layer  edge 

i = i t h  chemical. species 

j = j t h  chemical species 

1 = l t h  streatwise s ta t ion 

m = rnth iteratrion 

n = nth nodal point from the surface 

w = w a l l  
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I , INTRODUCTION 

The following study was  undertaken i n  order t o  determine the effects 

of upstream mass inject ion on the downstream heat t ransfer  properties 

of a supersonic laminar boundary layer. 

vehicles require considerable ablation or  mass inject ion cooling i n  the 

stagnation region i n  order t o  overcome the la rge  heat t ransfer  rates 

produced by the severe thermal environment during entry. 

mass remains i n  the boundary layer as the flow accelerates around the 

body. However, additional mass inject ion o r  even thermal sampling nay 

be t a k i n g  place on the afterbody of the vehicle, Therefore, it is 

desirable t o  determine to what extent the insulat ing properties of the 

upstream inject ion pe r s i s t  downstream i n  the boundary layer flow. 

High velocity l i f t i n g  entry 

This injected 

The study has fur ther  application i n  such problems as inject ion 

cooling near the leading edge of high-speed airfoils. I n  this case 

it i s  desirable t o  keep the  actual region of inject ion s m a l l  due t o  

s t ruc tura l  considerations, Downstream persistence of an insulat ing 

effect from inject ion would  then be highly beneficial. 

The laminar boundary layer  with mass inject ion has been the subject 

of numerous investigations i n  the past. 

treated flow i n  the region of inject ion and flow over an impermeable 

surface downstream from the in jec t ion  region as trso separate problems. 

The solutions obtained required some type of matching of solutions a t  

the interface between the inject ion region and the downstream region. 

Host of these studies have 
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Solutions f o r  

l a r i ty  type. Such 

the injected region have usually been of the simi- 

a solution was obtained by Iow('), who performed 

a c la s s i ca l  similarity analysis f o r  the compressible laninar boundary 

layer  with continuous f l u i d  injection. 

c i t ed  as the  lreXactll solution and has usually formed the s ta r t ing  point 

f o r  s tudies  of flow downstream from an inject ion region. 

sh i lz r i ty  requires the rather  r e s t r i c t ive  assumption tha t  the rate of 

coolant injection, fiw , be proportional. t o  some power of the distance 

from the  leading edge. 

boundary conditions cannot be transformed properly. 

showed experimentally tha t  A W i s  nearly constant with distance f o r  the 

case of ablation of Teflon from an Apollo-shaped body. 

casts serious doubts a t  l e a s t  on the va l id i ty  of  the similarity 

assumptions . 

This solution has often been 

However, 

In this case the power was  (4). Otherwise, 

Lee and Sundell (2) 

This r e s u l t  

More recently, Smith eC Clutter(3) developed a f ini te  difference 

solution t o  the laminar boundary layer  problem. 

procedure was reported t o  contain the capabili ty of handling arbitrary 

dis t r ibut ions of mass injection. However, t he i r  investigation was  di- 

rected more toward other aspects of the boundary layer problem and no 

applications to mass transfer cooling were presented. 

Their numerica 

The downstream region has been studied mainly by use of the K a r m a n -  

Pohlhausen integral  approacb. 

with a seventh-degree polynomial approdmation to the velocity and 

temperature prol"i1es. 

a t  the interface by assunring shear s t r e s s  and boundary layer thickness 

Rubesin and k o ~ e ( ~ )  used this method 

They matched the i r  prof i les  to Low's solution 
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t o  be continuous a t  the junction, 

degree polynomials but introduced additional parameters t o  insure con- 

t i nu i ty  of mass, momentum, and energy a t  the interface. The prof i les  

were allowed t o  change discontinuously a t  the interface but the para- 

meters were not made functions of distance. 

valid only f o r  a short  distance downstream from the injected region. 

Libby and Pallone") used sixth- 

The solution is, therefore, 

used a f i n i t e  difference scheme i n  the downstream region 

but  again matched t o  Low's solution a t  the junction, 

results with those of Rubesin and Inouye and Libby and Pallone, he 

found significant differences among the solutions, 

Zn comparing h i s  

All three studied 

the r ise i n  wall %emperatwe dlong an insulated plate. 

f e l l  i n  between the optimistic results of Libby and Pallone and the more 

conservative findings of  ibbesin and Inouye, 

140we~s resu l t s  

and Cresci'') have followed similar procedures f o r  

axisyrmnetric bodies. 

w h i l e  Cresci used exponential profiles. 

Chung assumed seventh-degree polynornial prof i les  

P a l l ~ n e ' ~ )  has also studied w a l l  temperature r i s e  along an insulated 

plate, using Lowts solution i n  the porous region, 

significant i n  t h a t  it more nearly follows the method of in tegra l  

re la t ions used i n  the present analysis. 

the whole boundaSy layer, as is done i n  the  Kaman-Pohlhausen approach, 

he subdivided the bouxdary layer in to  N' separate s t r ips .  

of the governing equations was then performed across each s t r ip ,  using 

a polynomial t o  represent the integrand over each individual s t r i p ,  

T h i s  resulted i n  far greater accuracy than i s  possible wi th  the more 

His analysis is 

Instead of integrating across 

Integration 



gross momentum-integral method. 

equations $ere integrated numerically and the resu l t s  compared we11 

with Howe's f in i te  difference results, 

The result ing ordinary different id .  

The present study differs from the previous ones i n  several respects. 

First of all, many o f  t h e  res t r ic t ive  assumptions of previous investiga- 

tors were relaxed. 

thus allowing arbitrary distributions of mass injection. 

was taken t o  be constant over the first portion of a planar  body, followed 

by a region of zero injection. 

laminar boundarg layer equations were solved by use of the integral-  

No s imilar i ty  was assumed fo r  the region of injection, 

Eass injection 

The complete nonsimilar, comjxessible 

matrix technique(' ').  his 

of in tegra l  re la t ions ( 7 7 )  . 
were solved together as one 

method i s  a recent outgrowth of the method 

Both the inject ion 2nd dormstream regions 

problem . 
The effects  of mass inject ion on heat transfer t o  an isothermal 

plate were studied. 

considered and the resu l t s  compared. 

Both sharp and blunt-nosed confi,.;urations were 
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11, ANALYSIS 

The equations tha t  govern the physical system under consideration 

are the two-dimensional, steady-state, non-reacting, laminar boundary 

layer equations , 

where Ki i s  the mass fract ion of t h e  i t h  species, D12 i s  the binary 

diffusion coeffi ,cient,p i s  the mixture viscosity,  k i s  the thermal 

conductivity, and Ht i s  the t o t a l  enthalpy. 

It should be noted a t  this poiqt t ha t  thermal diffusion i s  

neglected and no in te rna l  generation of species i s  assumed, 

the radius of curvature, rc, w i l l .  always be la rge  cornpared wi th  the 

boundary layer thickness, the term ($)s (equation ( 3 ) )  becomes approx- 

imately equal t o  zero. 

normal. pressure gradient, and the pressure becomes a function 02 

streamwise distance only, 

the system was assumed t o  be a binary mixture of 78.8% 

by volume. 

Also, as 

Therefore, it may be concluded tha t  there i s  no 

In  a l l  cases of i n t e r e s t  t o  the present study 

and 21.2% O2 
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The boundary conditions are as follows: 

1. uw = 0 

2, 

3 ,  

&e Kiw = given 

5. 

GW = ewvw , a given function of  s 

Tw = a given function of  s 

Edge conditions are specified functions of s 

U,(S)r P,(d, T&), Xi,w 
where subscript r r ~ t l  denoted the xill (i.e. PO), 

The transport properties are treated i n  accordance with kinet ic  

theory(' *) with s l i g h t  modifications reported i n  reference (1 0) 

Equal diffusion coeff ic ients  we assumed v i t h  DI2 given by the following 

relation: 

where T is the temperabrs i n  degrees Kelvin, p i s  the pressure i n  ab,, 

i s  the molecular weight of the reference species,TMfis the charac- %ef 
t e r i s t i c  c?i.an?eter of a molecule of the reference species (angstrom units), 

2nd-d:; is the co l l i s ion  in tegra l  f o r  the reference species, e i ther  

0 o r  N 

both species, 

since the binary diffusion coefficients are assumed equal f o r  2 2 

The viscosity i s  obtained from the Sutherlmd-;;7cLssil jetra 

approxima t ion  : 2 
/u = Z / u i D ;  

i 4 

where 

with -I D; f.0 

of j t h  species (i 

xi 
D12 

z 3 ) .  



The thermal conductivity, k , is t reated as the sum of the mono- 

tonic thermal conductivity and a contribution from the internal  degrees 

of freedom: 

where 

with 

and 

The contribution from the internal. degrees of freedom is given by: 

The temperature dependencies of C h , and entropy are obtained 
P ,  - 

(1 3) from curve f i ts  of (TANAF'experimen~al data 
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TRANSFOLWITI:OfirS: A modified Levy-Lees s imi la r i ty  transform is used vdth 

non-similar terns being retained i n  the equations, The transformed 

varikbles $ and are given by (10). . 

e = f~(s)p,cs),u,  cs> d s  
0 

The quantity .r,,(f) i s  a stretching parameter determined during the 

numerical i t e ra t ion ,  

re la t ive ly  uniform i n  the transformed plane. 

convenience i n  tha t  a uniform placement of nodal points across the 

boundary layer can be set in advance for a l l  problems. 

It is used t o  keep the boundary layer thickness 

This i s  mainly a numerical 

The pammter 

o(,, (9) i s  determined by specifging the velocity r a t i o  a t  a cer ta in  nodal 

point i n  the boundary layer, 

where 

f ‘ I &  = 3 4‘ I, m 

f’= 01, 

A good choice has been g = 0.80 a t  the 5th of seven nodes. 

A stream funckion i s  also defined and is given by: 

Applying these transformations t o  equations (2), (4) and (5) yields 

the results: 
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and 

The quantity ,!3 therefore i s  a pressure gradient 3arameter. 

// 

f, = o  

The quant i t ies  €Itw, €It,, ICiw, and Kim, are specified functions of 8 .  

INTEGRAL HATRIX PROCEDURE: 

Bartlett  ('O) the transformed equations are put i n to  integral  matrix 

Following the method of Iienddl. & 

form. The de t a i l s  of this procedure are presented on ly  f o r  the 

momentum equation. The handling of the species concentration and energy 

equations i s  completely an'klogous and i s  omitted i n  order t o  avoid 

needless algebraic complexity. 
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The transformed momentum equation is: 

The boundary lzyer i s  divided in to  14-1 s t r i p s  a t  a given stream- 

wise s ta t ion  s, These s t r i p s  are bounded by N nodal points. In  the 

f i n a l  numerical solution N = 7 was used. 

where n = 1 a t  the wall and n = N on the boundarylayer edge. 

The points are designated /i, 

Let Pn represent any of the 

quantit ies f (  &), fl( $,,), 

f"(2-L or f " ' ( Q n ) s  

can be re lated t o  Pn by means 

of a Taylor ser ies  expansion 

about 4,  : 

= e +  + f 

- a 7  F R E ~  STREAM 

. cc 

The highest order derivative of the dependent variable f which 

appears i n  the boundary layer equations i s  f t l t ,  

i s  truncated a t  the next highest derivative, f t l l l .  

Therefore, the ser ies  

The quantity f l t l f  



merefore the truncated Taylor ser ies  expansions for fn, fin, f t t n  

become : 

The foregoing i s  an impl ic i t  set of re la t ions giving fn + 

f' n + 1 9  f"n + 11 andf ' "n  + 1 as functions of 2 . 
as a ttspline f i t t i  and serves the same purpose as f i n i t e  difference re- 

T h i s  is known 

l a t i ons  i n  usual numerical analyses. However, i n  t h i s  case the func- 

tions j o in  i n  a continuous manner a t  the nodal points, thus requiring 

fewer nodes f o r  the same re l a t ive  accuracy. 

are treated in the same manner. 

The variables Ht and Ki 

Derivatives i n  the streamwise direction are represented by the 

conventional three-point backcard difference relations:  

where 

where P1 i s  any dependent variable and P1 i s  the variable evaluated - 
a t  the previous streamwise station. 
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f 
n- I 

!&e momentum equation can 

s t r i p  t o  obtain equations 

12 

now be integrated a t  constant $ across 

of the form: 

n-I  ~ n-I 

n 

me integrtll j' ++ l 'd t  can be integrated by 
n - I  

parts t o  give: 

(37) 

The remaining in tegra l  is expanded i n  a Taylor series,  

where P may be any dependent variable, 

has been applied as i n  previous Taylor series expansions, 

"he same truncation cr i ter ion 

Using the 

forratla (38) with P = E', the in tegra l  becmes : 
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Now consider the integrals of the streamwise derivatives using 

the T i n i t e  difference approldmation, 

vl 

- f f" (d,f, + d, fa-, + d,  b-z> =k! (41 )  
n-t 

Integrating the second integral on the r i g h t  hand side by par t s  

a-I & - I  

These in tegra ls  are of the same form as equation (38) znd can be 

expanded i n  a Taylor se r ies  i n  like manner with the result: 



Finally, a similar procedure applied t o  the third streamwise 

n 
-f$ da. This can be done by approximating &= It remains to evdluate -F n- I 

as a cubic between n-1 and n. 

matching the cubic a2proximation t o  the value of .k and (F) a t  

adjacent nodal points. 

The four coefficients are evaluated by 

e 
/ 

The function can then be integrated exactly 

across the s t r i p  t o  give: 

(47) 

This approximation $511 not be quite as accurate as the preceding ones 

since the derivatives are not necessarily continuous a t  each node. 



Substituting the previously derived formulas i n to  the momentum 

equation yields : 

The real power of the integral-matrix method comes from the f a c t  

t ha t  integrals  of functions rather  than the functions themselves and 

the i r  derivatives are approximated. Since integrals  tend t o  be. much 

smoother functions, the approximations give much more accurate r e su l t s  

than can be attained by apgroximating the functions directly. 
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E4TISIX SOLUTIOIJS ?ROCSINRE: 

to the  species conservation and energy equations. 

A completely analogous procedure i s  applied 

The result ing matrix 

of equations contains 3(N-l) conservation equations over the N-1 intervals, 

7(N-1) Taylor se r ies  expansions, 10 boundary conditions, and the o ( ~  

constraint. 

f, Ht' and K. and t h e i r  derivatives a t  each nodal point and ol, . 
These contain 10 N + 1 variables, i.e., the primary variables 

These 
L 

equations m e  solved through use of a generalized Newton-Raphson 

i t e r a t ion  procedure. 

This can best  be i l l u s t r a t ed  f o r  the arbitrary- functions Fl and F2. 

Suppose F,(x, y) and F2(x, y) are complicated functions of x and yo 

Further suppose 2, 7 represent the solution t o  the equations F1 = 0, 

F2 r* 0. 

terms 0 

One can expand the functions i n  a Taylor series to  first order 

where x are the values o f  x and y after the  mth i terat ion.  If m' Yrn - -  
x, y are replaced by xm+,, 

where 
AX, = X w  

the equations (49) yield: Ym+l , 

+ I  -xwl  

and the subscript m denotes the quaqtity evaluated a t  xmz yn. 
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I n  matrix notation, 

c 

K 

Notice t h a t  the coefficient m a t r i x  and the r igh t  hand side are 

functions of  xm, ym only, Therefore,bxm,ds, can be calculated i n  t e r n  

of F1 and F2 and t h e i r  derivatives evaluated a t  

."1 A Ym 

(52) 

The quantit ies Axm, 4 ym represent corrections t o  be added to xm, ym 

t o  give new values of the dependent variables x ~ + ~ ,  ym+10 A solution 

is obtxined by guessing x 

x2, y2, etc. 

until the corrections become a rb i t r a r i l y  small depending on accuracy 

calculating the corrections, obtaining 

and F2 approach zero o r  
1' Yl'  

The procedure continues u n t i l  I? 
1 

requirements. 

Obviously t h i s  grocedure may be extended t o  any number of variables 

and equations. T h i s  has been done i n  the present study with excellent 

results. 
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The linearized momentum equation becomes: 

The quantity "error" i s  simply the momentum equation (lr8) evaluated 

after the mth i terat ion.  Similar expressions may be derived f o r  the 

species and energy equations . 
The solution f o r  this set of equations has been programmed f o r  

d i g i t a l  computations. 

three t o  four i t e ra t ions  f o r  the first stremdse station. Dotrnstream 

s ta t ions  converge i n  one o r  two i te ra t ions  since the  upstream solution 

i s  used as a first guess for  the next point dobmstream. 

case including discontinuous mass injection i s  routinely solved f o r  

twenty streamwise s ta t ions and seven nodal. points i n  approximately one 

and one half minrztes on a Univac 1108 computer. 

Convergence has been very rapid, usually i n  

An ent i re  
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111. RESULTS AND DISCUSSION - 
Calculations have been performed f o r  several planar bodies with air 

into air injection. 

sharp and blunt leading edges have been considered, 

were held constant f o r  all cases with M,= 2,O, Pa = ,0428 ab., a d  

T,,, = 1442°R. Furthermore, only i so themal  surfaces a t  75OoR were 

considered. Graphs a re  plot ted with %fist as the ordinate, where 

i s  the loca l  heat t ransfer  rate a t  the wall while 4,, corresponds t o  

the heat t ransfer  a t  the stagnation point f o r  the case of no injection. 

I n  the cases of p la tes  with sharp leading edges, 4,%is the stagnation 

point  heat t ransfer  f o r  a geometrically similar body xdth a blunt leading 

edge. 

Plates of one and five-foot lengths with both 

Freestream conditions 

% 

The abscissa i s  the distance from the leading edge of the plate. 

figures 1, 2, and 3 present the re,ml.t;s f o r  a one-foot p la te  with 

a sharp leading edge. 

the first 10, 20 and 40% of the  p l a t e  length w h i l e  holding the t o t a l  

mass of in jec tan t  constant. 

I n  each case, the inject ion i s  dis t r ibuted over 

It i s  observed tha t  increasing the total 

mass of coolant i n j e c t e d i n  successive cases increases the magnitude 

of the cooling e f f ec t  but leaves the shape of the curves relatively 

unchanged. 

In  the inject ion region, the heat t ransfer  i s  observed t o  decrease 

r e l a t ive  t o  the no inject ion case as the distance from the leading 

edge decreases. This i s  followed by a sharp r ise i n  heat t ransfer  

immediately downstream from,  the point where i n  Section stops. 

the curve approaches the no inject ion heat t ransfer  rate asymptotically 

Finally, 

a t  l a rger  distances downstream from &ere inject ion stops, 



20 

The mathematical model actual ly  predicts a discontinuous j w p  i n  heat 

t ransfer  a t  the termination of injection, 

no internal. heat conduction i s  permitted i n  the isothermal. w a l l .  

reality, such conduction would occur and the w a l l  could not be held 

exactly a t  a constant temperature, 

t o  a cusp as a compromise a t  t h i s  point, 

This i s  due t o  the f a c t  t h a t  

In 

The curves have been drawn smoothly 

It can be observed tha t  the length needed f o r  recovery t o  the 

aero inject ion heat t ransfer  rate depends on the length of the inject ion 

region as w e l l  as the coolant inject ion rate, 

inject ion region increases, so the distance required f o r  recovery 

A s  the  length of the 

increases, 

follows; the persistence of any insulating effect downstream from in- 

ject ion i s  due t o  the presence of extra mass i n  t h e  boundaqj layer. 

This mass causes both a thickening of the  boundary layer and an 

increase i n  the total heat capacity of the boundary layer. 

The physical. reasoning behind this f a c t  i s  f e l t  t o  be as 

W t h e r -  

more, the boundary layer natural ly  grows with distance from the leading 

edge a t  a rate roughly proportional t o  x where x i s  the distance from 

the leading edge, 

bounchqj layer  will naturally be thicker and grow more slowly than a t  

points upstream, merefore, the extra  thickening due t o  inject ion dies 

out more slowly a t  downstream points than a t  points near the lexking 

edge. 

greater distances when the inject ion region i s  longer. 

% 

Thus, at points downstream from inject ion cutoff, the 

I n  this way, the heat blockage due t o  inject ion can persist for 

Figures 4, 5 ,  and 6 present similar r e su l t s  f o r  a five-foot plate, 

Comparison of results for the one and five-foot plates shows the lack 
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of any direct scaling. 

tha t  describe the system. 

directly k i th  the geometric dimensions. 

strongly affected by proportionately equal mass injection than i s  the 

one-foot plate. 

the form of a r a t i o  of heat t ransfer  with inject ion t o  heat transfer with 

no injection. 

This i s  due to the highly nonlinear equations 

The boundary layer thickness does not scale 

Thus the five-fcot plate  i s  more 

Figure 7 presents the same re su l t s  as Figure 6 but i n  

Figures 8 and 9 show typical velocity and temperature profiles. 

The prof i les  i n  the inject ion region show a basic difference from those 

downstream i n  t h a t  the injection region prof i les  exhibit a reverse 

curvature near the wall. 

heat t ransfer  rates usually caused the numerical solution t o  become 

unstable as profiles became nearly ver t ica l  a t  the w q l l .  The actual 

prediction of boundary layer  blowoff is not possible though since one 

of the basic assumptions of the laminar boundary layer equations is 

violated under blowoff conditions. 

characteristic laminar shape a short  distance downstream from the end 

of inject ion as the slow injected air i s  accelerated i n  the boundary layer. 

Figures 10 and 12 show heat transfer rates over the leading edge 

Injection ra tes  la rge  enough t o  cause negative 

The prof i les  recover t h e i r  

of one and five-foot blunt plates. 

leading edge was taken from the experimental results of Gowen and 

Perkins("). 

arc. 

plate  cases. 

transfer a t  about ?;? has been observed experimentally by Rose, et. al. 

The pressure distribution over the 

Injection was limited t o  the first 224' of the circular  

The quali tative nature of the results i s  the same as the sharp 

The increase i n  heat transfer over the stagnation heat 

(15) 
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This i n i t i a l  rise may be due t o  the  high ini t ia l .  acceleration of the 

flow away from the stagnation point, 

the  boundary layer f o r  a short  distance downstream. 

This causes an actual thinning of 

The abrupt change i n  slope a t  15' i s  more difficult to explain. 

It i s  not  cer ta in  if this is  a physical phenomenon or  a numerical 

i n s t ab i l i t y ,  

parameter i n  this region, 

The solution i s  very sensit ive t o  the pressure gradient 

Figures 11 and 13 show the downstream ef fec ts  of stagnation point 

In  Figures 14 and 15, the inject ion region extends over 

The results are qual i ta t ively the same as before 

heat transfer.  

75' of the radius. 

though the magnitude of the. e f f ec t  is m c h  larger, 

plate, the heat t ransfer  is s t i l l  about 18% lower than the zero inject ion 

A t  the end of the 

case as shown i n  Figure 16. 
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IV. CONCLUSIONS 

"he e f f ec t  of upstream mass inject ion on downstream heat t ransfer  

in a laminar boundary layer has been investigated f o r  supersonic flow 

over f l a t  plates  with both sharp and blunt leading edges. 

se t  of nonsimilar boundary layer equations was  solved using the integral 

The complete 

matrix technique, 

e f f ec t  has been found t o  pe r s i s t  f o r  a considerable distance downstream 

from inject ion cutoff, Furthermore, the length of the inject ion region 

has also been found t o  have a substant ia l  effect on the distance required 

I n  cases with large mass inject ion rates, an insulating 

f o r  the  heat blockage e f fec ts  due t o  inject ion t o  die out, For a given 

t o W  coolant mass, longer inject ion regions were found t o  require pro- 

portionally longer distances f o r  the loca l  heat transfer rate to approach 

a given percentage of the local zero inject ion heat transfer ra+&. 
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